当前位置: 首页 > 新闻中心 > 致密油 页岩油开发渗流理论与开发技术 朱维耀 著 科学出版社 978703

致密油 页岩油开发渗流理论与开发技术 朱维耀 著 科学出版社 978703

发布时间:2024-02-13 21:48:46

  1. 地层条件下油藏岩石渗流特征研究
  2. 什么是致密砂岩气?
  3. 连续型油气形成与特征

一、地层条件下油藏岩石渗流特征研究

王建 孙志刚

摘要 介绍了地层条件下测定油水相对渗透率的流程与方法。实验研究了压力、温度和流体性质对油水相对渗透率测定结果的影响。以胜坨油田2-3-j1503井为例,给出了地面条件及地层条件下的典型相渗透率曲线,并对测定结果的差异进行了讨论。

关键词 地层条件 渗流特征 测定方法 影响机理

一、引言

室内实验得到的岩石渗透率、油水两相相对渗透率等参数广泛应用于油藏数值模拟、最终采收率和含水量上升率计算中。目前,这类参数都是在地面条件下测定的,存在着地面条件和油藏条件的差异。本次研究的目的就在于探索油藏条件下渗流参数测定方法,深入研究其影响机理,提高室内实验成果的整体水平。

二、影响因素研究

1.压力对岩石渗流的影响

目前,对上覆地层压力的影响问题看法不一。wilson等人的研究表明,在地层温度和上覆压力为34.5mpa时,测得的油水有效渗透率比常温、常压下要低;merliss等人则认为上覆压力对相对渗透率的影响主要是由于界面张力的变化所引起[1]。

为研究压力对油水相对渗透率的影响,进行了地层压力和常压条件下的油水相对渗透率对比实验。使用两组平行样品,分别在净上覆压力为2mpa(地面条件)和20mpa(地层条件)条件下测定其油水相对渗透率。为得到有代表性的相对渗透率曲线,将同组样品所测定的相对渗透率曲线先进行标准化处理,后求取平均相对渗透率曲线(图1)。

图1 两种条件下的平均相渗曲线图

由图1可见,在地层压力条件下,由于上覆压力的增大,使得相渗曲线中束缚水饱和度增大,油水两相区宽度减小;高压下的水相相对渗透率上升较快,油相相对渗透率下降较快,这是由于上覆压力改变了岩心的孔隙结构,在上覆压力的作用下,岩心的非均质性增强,油水前缘分布更加不均,造成水相的上升和油相的下降都增快的结果。

2.温度对岩石渗流的影响

针对油藏温度与常温条件下油水相对渗透率是否存在差别,进行了两类实验研究。一类使用同一种油水在不同温度下测定油水相对渗透率;另一类是使用不同油水,保证在不同的温度时具有接近的油水粘度比条件下测定油水相对渗透率。所用岩心都是胶结好、均质程度高的平行样。

图2 不同温度和不同油水粘度比条件下的油水相渗曲线图

(1)相同种油水,不同温度和油水粘度比条件下的相渗曲线对比

用自配油-3%kcl水分别在20℃、70℃和90℃条件下进行了油水相对渗透率测定。随着温度的升高,束缚水饱和度增大,残余油饱和度减小(图2)。这是由于温度的升高使得油水粘度比减小,从而改变了样品中油水两相的分布。高油水粘度比时,油更易将水驱出,因此束缚水较低,而水较难将油驱出,因此残余油较高;相反,在低油水粘度比时,就会出现高束缚水饱和度,低残余油饱和度的现象。

(2)不同温度相同油水粘度比的油水相渗曲线对比

选择在18℃、60℃和120℃条件下具有相近油水粘度比的三种自配油/3%kcl,进行油水相对渗透率测定。从测定结果看出,不再出现“随着温度的升高,束缚水饱和度增大,残余油饱和度减小”的现象,而是三条相对渗透率曲线基本接近。只是随着温度的升高,油水相对渗透率略有增大(图3)。这是因为在油藏温度下,精制油/盐水的毛管压力要低于常温条件的毛管压力。因此,在进行相对渗透率实验时,最好选用模拟油藏温度。实验条件达不到时,必须模拟油藏油水粘度比。

图3 不同温度、相同油水粘度比条件下的油水相渗曲线

3.流体对岩石渗流的影响

实验室进行岩石渗流研究大多采用精炼油。为了研究不同油品对两相渗流的影响,进行了精制油、脱气原油和含气原油的对比实验。实验结果看出,用三种油品所做的相对渗透率曲线基本接近(图4)。其原因是:①实验是在油藏温度下进行,原油中的胶质、沥青质不会析出阻塞孔道;②实验所用的样品是新鲜天然岩心,且样品清洗未破坏岩心原始润湿性;③三条相渗曲线是在相近的油水粘度比条件下测定完成的。

含气原油/盐水的油水两相相对渗透率要略高于脱气原油/盐水。这是含气原油在饱和压力以上随压力的升高界面张力降低所造成的[2]。

图4 精制油、脱气原油和含气原油的相渗曲线图

精制油/盐水与原油/盐水的相对渗透率曲线之间存在差别,但差别不大。其原因是原油降低了样品的相对润湿指数,使样品的润湿性从水湿趋向弱水湿[3]。

综上所述,研究油藏条件下的岩石渗流问题,应该使用油层压力和油层温度条件下的含气原油,也可以使用相同粘度的脱气原油来代替含气原油。在条件达不到时,使用精制油。

三、地层条件下岩石相对渗透率的测定

对岩石渗流影响因素的分析表明,在研究模拟地层条件下岩石渗流时,必须模拟油藏岩石的净上覆压力;模拟油藏油水粘度比的同时应该同时模拟地层温度并且使用含气原油,也可以使用相同粘度的脱气原油来代替含气原油;试验用水可使用现场地层水、注入水或由实验室根据水分析资料配制而成的盐水。

进行地层条件下油水相对渗透率测定的具体步骤如下。

第一,校对岩样清单,记录油藏压力、油藏温度、油水粘度比以及样品的井段、距顶。

第二,检查所有仪器设备。

第三,按sy/t5336标准,测定岩样的空气渗透率。

第四,测定岩样的孔隙体积和孔隙度:①将样品装入高压夹持器,围压加至地层净上覆压力,抽真空1h-2h;②将夹持器进口连接高精度计量泵,开泵,恒压方式建立一定压力;③待泵压稳定后,将泵出体积项清零,打开夹持器进口阀,待压力再次恒定后,读出泵的泵出体积数,此数即样品孔隙体积。

第五,测定岩样的含油饱和度和束缚水饱和度:①将夹持器的出口端与高压油水分离器连接,调节回压控制旋钮,将高压分离器出口回压加至含气原油泡点压力以上;②泵入盐水,直至回压阀出口流出液体,系统的流压高于泡点压力;③打开油容器出口,将高压油水分离器充满实验所用的油水,使油水界面处于分离器的中下部,关闭分离器下部出口,打开上部出口,待整个系统的压力平衡后,油水分离器清零,进行油驱水;④不断提高注入速度,直到分离器刻度不再增加,记下此点,减去饱和油死体积就是原始油体积,从而可计算出含油饱和度和束缚水饱和度。

第六,测定束缚水饱和度下油相渗透率:由低到高选择3个压力点进行测定,并在其压力、流速稳定后测定油相渗透率,测量值之间的相对偏差小于5%时,取其算术平均值。

第七,进行水驱油的油水相对渗透率测定(非稳态恒速法):①关闭分离器上部出口,打开下部出口,待系统压力平衡后,将油水分离器清零,记下出口天平刻度;②注水驱油,记录各个时刻的驱替压力、分离器读数和电子天平读数。

四、地面条件下和地层条件下实验结果的对比和讨论

通过实验研究,分别就平行样(天然岩心)在地面条件下和地层条件下的渗流特征进行了对比分析,取得了一定的规律性认识。

1.单相渗流规律

研究方法是测定样品在不同净上覆压力下的有效渗透率,将测得的结果按二次多项式拟合,截距设定为地面渗透率。将得到的一系列系数进行数理统计,得到不同岩性的有效渗透率随净上覆压力变化的变化规律。表1为胜坨油田2-3-j1503井10块样品有效渗透率与净上覆压力关系式。

表1 有效渗透率与净上覆压力关系式以及三个系数的统计表

将2-3-j1503井样品作为反映该区块岩石性质的一个整体,将其有效渗透率与净上覆压力关系式中的系数进行数理统计,统计方法如图5、6所示。

统计后得到关系式:b=67.6a;ko=42.88b。其相关系数分别为0.9924和0.9745。

将 a,b代换,有效渗透率与净上覆压力的统计规律如下:

胜利油区勘探开发论文集

式中:kob——层上覆压力下的样品有效渗透率,10-3μm2;

pc——地层净上覆压力,mpa;

ko——地面条件下的样品有效渗透率,10-3μm2。

图5 b—a关系图

图6 ko—b关系图

利用公式(1),根据实际油藏的净覆盖压力以及地面条件下的有效渗透率可预测油藏的地层有效渗透率。而公式(2)反映的是油藏岩石无因次渗透率随净上覆压力的变化规律。

2.两相渗流规律

利用平行样品,分别测定它们在地面条件下和地层条件下的相对渗透率曲线,将每块样品的相对渗透率曲线进行标准化处理,求取平均相对渗透率曲线。以胜坨油田2-3-j1503井样品为例,结果见图7。

由图7可见,两种条件下的相渗曲线在束缚水饱和度、两相区宽度以及曲线形态上都存在一定的差异。为更加清楚地分析认识地层条件与地面条件的区别,绘制其平均分流量曲线(图8)。

由图8可以清楚地看出,地层条件下的束缚水饱和度(swi)高于地面条件;地层条件下的油水两相的前缘含水饱和度(swf)低于地面条件;地层条件下的油水两相区平均含水饱和度 低于地面条件,含水量上升变快。这是由于净上覆压力的增大改变了样品的孔隙结构,增加了岩心的微观非均质性,造成束缚水饱和度增大,使得水相渗透率上升变快,油水前缘分布更加不均,也就造成了前缘水饱和度的降低。

图7 地层条件下和地面条件下平均油水相对渗透率对比曲线图

图7中,地面条件下测定的最终水相相对渗透率要低于地层条件下测定的最终水相相对渗透率。其原因是实验条件中,温度的升高降低了毛管力的影响[4],同时,含气原油改变岩心的润湿性,这两种影响都会造成最终水相渗透率的增高[3]。

图8  地层条件下和地面条件下水分流量对比曲线图

swi—束缚水饱和度;swf—前缘含水饱和度; —平均含水饱和度

五、结论

净上覆压力是影响岩石渗流规律的主要因素。

对岩石有效渗透率与净上覆压力所做出的统计规律具有一定的推广应用价值。

与地面条件相比,地层条件下的相对渗透率曲线存在着“三高两低”的规律,即束缚水饱和度高,油水两相的前缘含水饱和度低,油水两相区平均含水饱和度低,含水量上升率高以及最终水相相对渗透率高。因此,在进行油水相对渗透率实验时,应该模拟地层条件。

通过对地层条件下油藏岩石渗流特征的分析研究,可以推断,在进行其他的开发试验时同样也存在地层条件下与地面条件下测量结果的差异,也存在如何再现油藏真实条件的问题。这将是开发试验研究需要认真研究解决的重大问题之一。

致谢 在研究过程中,得到院机关有关科室,尤其是计划科的领导提供了支持和帮助,本室的老专家宗习武、李树浓、涂富华等给予了悉心指导在此表示衷心感谢。

主要参考文献

[1]沈平平.油层物理实验技术.北京:石油工业出版社,1995:166.

[2]沈平平.油层物理实验技术.北京:石油工业出版社,1995:96.

[3]kkmohanty,a emiller.影响混合润湿性储集层岩石非稳态相对渗透率的因素.见:ccmattax,rmmckinley著.杨普华,倪方天译.岩心分析论文集.北京:石油工业出版社,1998:175~196.

[4]fred bratteli,hans p normann.油藏条件和润湿性对毛细管压力曲线的影响.见:c c mattax,r m mckinley著.杨普华,倪方天译.岩心分析论文集.北京:石油工业出版社,1998:246~257.

二、什么是致密砂岩气?

一、致密砂岩气的概念及特征

(一)致密砂岩气的概念

致密砂岩气是一种储集于低渗透—特低渗透致密砂岩储层中的典型的非常规天然气资源,依靠常规技术难以开采,需通过大规模压裂或特殊采气工艺技术才能产出具有经济价值的天然气(李建中等,2012;邹才能等,2011)。

(二)储层特征

致密砂岩储层具有分布面积较广、埋藏深度较大、成岩演化作用复杂、储层物性差、非均质性强及不完全受制于达西定律等特点,最主要的是单井产能一般较低,通常局部地区发育有“甜点”,利用常规技术难以进行开发。与常规砂岩储层相比,致密砂岩气储层具有以下基本特征:

(1)孔隙度与渗透率均较小,喉道小且改造频繁,连通性差。一般来说,致密砂岩的孔隙度小于10%,渗透率小于0.1md。

(2)成岩后生作用强烈,次生孔隙占重要地位。致密砂岩通常具有沉积速度相对较慢、成岩过程长的特点。由于成岩历史长且成岩序列复杂,往往压实强烈,后生作用明显,原始粒间孔隙减少较多。据统计,其次生孔隙约占总孔隙的30%~50%。

(3)束缚水饱和度较高且变化较大。根据鄂尔多斯盆地上古生界致密砂岩储层束缚水饱和度的分析,束缚水饱和度都在40%以上,而spencer认为致密砂岩储层的束缚水饱和度为45%~70%。

(4)砂体不发育,一般呈透镜状(主要是指“甜点”)。据统计,透镜体产层的天然气占致密砂岩气总储量的43%,这或许是由于透镜状砂体比薄互层状砂体压实率低及溶蚀作用强。

(5)非均质程度高,岩性多样且粒度偏细,自生黏土矿物含量较大,砂泥交互,酸敏明显,驱油效果差,通常伴有裂缝(尤其是微裂缝),层控作用明显。

(6)地层压力异常,变化不一,但毛管压力一般较高。在润湿相饱和度达50%的情况下,通过压汞法和高速离心法测得毛管压力一般大于6.9mpa,气水分布较为复杂(异常高压和异常低压均有可能)(于兴河等,2015)。

二、致密砂岩气的成藏机制

(一)储层成因类型

致密砂岩储层与常规砂岩储层相比具有特殊的特征。soeder和randolph(1987)将致密砂岩储层划分出3种类型,即由自生黏土矿物沉淀造成的岩石孔隙堵塞的致密砂岩储层、由于自生胶结物的堵塞而改变原生孔隙的致密砂岩储层和由于沉积时杂基充填原生孔隙的泥质砂岩储层。shanley等(2004)认为了解常规储层和致密储层之间的岩石学特征对于理解致密储层和预测致密储层是非常关键的;而且指出,致密砂岩储层并不总是由砂岩成分的不成熟、泥质杂基含量高所造成的,在成分成熟度较高的砂岩中一样存在着致密储层。因此,按照砂岩储层的致密成因,可以将致密砂岩储层划分为4种类型(张哨楠,2008)。

1.由自生黏土矿物的大量沉淀所形成的致密砂岩储层

此类致密储层可以是结构成熟度和成分成熟度均比较高的砂岩,也可以是结构成熟度较高而成分成熟度不高的砂岩。岩石类型为石英砂岩,硅质岩碎屑含量比较高,岩石的分选性好,颗粒之间没有任何黏土杂基存在;但是在埋藏过程中由于自生的伊利石堵塞了颗粒间的喉道,喉道间的连通主要依靠伊利石矿物间的微孔隙,这使得岩石的渗透率极低,然而孔隙度的降低与渗透率相比不太明显,主要形成中孔、低渗的致密储层。

2.胶结物的晶出改变原生孔隙形成的致密砂岩储层

在砂岩储层埋藏过程中,由于石英和方解石以胶结物的形式存在于碎屑颗粒之间,极大地降低了储层的孔隙度,储层的渗透率也随之降低,形成低孔、低渗的致密储层。在孔隙中可以保存形成时间比较早的次生孔隙。岩石类型为岩屑石英砂岩,岩石的分选较好,含有少量的长石,孔隙类型主要有长石早期溶蚀形成的粒内溶孔以及高岭石沉淀形成的晶间微孔隙。

3.高含量塑性碎屑因压实作用形成的致密砂岩储层

对于距离物源比较近、沉积环境水体能量不高、沉积物成分比较复杂尤其是塑性和不稳定碎屑含量较高的储层,在埋藏过程中,在没有异常压力形成的条件下,因压实作用使塑性碎屑变形从而呈假杂基状充填于碎屑颗粒之间,导致砂岩储层成为致密储层。

4.粒间孔隙被碎屑沉积时的泥质充填形成的致密砂岩储层

在低能条件下或者在浊流条件下,由于沉积水体浑浊或者因水体能量不高,碎屑颗粒间杂基含量比较高,成为泥质砂岩。由于粒间孔隙被杂基所占据,孔隙间的流体交换不顺畅,无论早期还是晚期的溶蚀性流体都很难进入到孔隙中,因此粒间孔隙或者粒内孔隙都不发育;在泥质杂基中,可能发生重结晶或者微弱的溶蚀,形成杂基内的溶蚀微孔隙。

(二)成藏机制

姜振学等根据储层致密化与天然气充注的先后关系将致密砂岩气藏分为2种类型——储层先期致密型(“先成型”)和储层后期致密型(“后成型”)。“先成型”致密砂岩气藏的储层致密化过程发生在烃源岩生排烃高峰期天然气充注之前,并要求孔隙度小于12%,渗透率小于1md。而“后成型”致密砂岩气藏则以储层后致密为特征。

三、致密砂岩气的开发利用

(一)致密砂岩气的开采

1.多级压裂水平井技术

多级压裂水平井技术结合了水平井技术和多级压裂技术的优点,有效改善了近井地带渗流条件,大幅提高了单井控制储量,已成为有效开发致密砂岩油气藏的重要技术手段。通过利用参数对比法、试井曲线形态判别法、裂缝参数分析法等方法,对多级压裂水平井的有关参数进行评价及方案优选。

2.超前注水技术

致密砂岩油气藏的岩性致密,渗流阻力大,而且压力的传导能力很差。所以仅仅依靠天然的能量进行开采,其采收率很低,而且地层压力很难恢复。因此要保持地层的注采平衡,可以采用超前注水的方法。

超前注水是指注水井在采油井投产前投注,经过一定时间的注水,使地层压力上升至高于原始地层压力,并建立起有效驱替系统,油层内驱替压力梯度大于启动压力梯度后,油井投产并保持这种状态下开采的开发方式。

采用超前注水的机理如下:超前注水可以维持地层压力,促使单井获得较高的产量,从而避免了储层渗透率的降低和启动压力梯度的升高;超前注水增大了流体在地层中的渗流速度,有利于提高油相相对渗透率;超前注水会提高油气藏的最终采收率。

3.油气藏描述技术

油藏描述总体上分为三种:以测井为主体的油藏描述阶段、多学科协同油藏描述发展阶段、多学科一体化油藏描述阶段。

对致密砂岩气藏进行精细描述,是有效开发这类气藏的基础。目前发展了以提高储层预测和气水识别精度为目标的二维、三维地震技术系列,主要包括构造描述技术、波阻抗反演储层预测技术、地震属性技术、频谱成像技术、三维可视化技术以及地震叠前反演技术。对致密砂岩气藏而言,寻找裂缝发育带,对提高致密储层天然气的储量、提高单井产量有着举足轻重的作用,它直接关系到致密砂岩气藏的经济可采性。

4.储层改造技术

在20世纪末,储层改造主要是作为增产措施和解除近井地带地层的伤害、提高近井地带油气层的渗流能力、提高单井产量的重要手段。现阶段,储层改造技术越来越受到重视。中国石油对储层改造技术给予了高度的重视,并设置了多个重大专项,这些条件为储层改造技术的进步和发展提供了坚实的后盾。常见的储层改造技术如下:

(1)加砂压裂技术:在地面用压裂泵车,使井眼内的压力增高,从而克服地层的地应力和岩石张力强度,进而促使岩石破裂,形成人工裂缝。

(2)高能气体压裂技术:通过电缆将高能燃料输送到气层井段,利用点燃气体产生的大体积的燃烧气体,瞬间产生一个破裂压力,撕开多条主裂缝和微裂缝。

(3)喷砂射孔技术:通过油管将高压喷射射孔枪送到目的层段,利用射孔枪喷射产生的高速液体,在岩石中形成一定深度的孔眼。

(4)酸化技术:在地面用高压泵车,从油管内向地层注入一定浓度的酸液,通过酸液与地层中钻井液、滤液和地层中的可酸蚀成分发生化学反应,清除孔隙中污染和扩大孔隙,减小油气流阻力,提高油气井的产量。

5.注气开发技术

注气开发技术大致上可以分为一次接触、多次接触和非混相驱三种,其基本原理是通过注气达到降低油水界面张力,进而提高油田的驱油效率和提高油田的经济效益。

采用注气开发技术开发致密砂岩油气藏,首先要选择什么气体作为注入气,现行的注气开发一般选用的是co2、n2或烃类气体,使用最多的是co2。co2气体能有效降低原油黏度,降低残余油饱和度,溶解储层中胶质,提高渗透率。气驱时,气体与原油接触并溶解于原油中,原油的黏度降低、体积膨胀,同时原油和注入气体的界面张力降低,原油中溶解的气体越多,降黏的幅度越大,油气的界面张力越小,气体进入孔隙的阻力越小。

(二)开发利用状况

据统计,目前全球大约有70个盆地中发育致密砂岩气,主要集中在北美、亚太、拉丁美洲、原苏联和中东—北非等地区。全球致密砂岩气资源量约为210×1012m3,现今技术可开采的致密砂岩气储量约为(10.5~24.0)×1012m3。致密砂岩气勘探开发率先取得重大突破的国家是美国,在900个气田中致密砂岩气生产井超过40000口,占美国陆上除了阿拉斯加和夏威夷州外天然气产量的13%。美国致密砂岩气的研究发展迅速,致密砂岩气产量逐年增加,已由1990年的600×108m3增加到2008年的1757×108m3(呙诗阳等,2013)。

我国致密砂岩气资源量主要分布在陆上含煤系地层的沉积盆地中,共有致密砂岩气地质资源量(17.0~23.9)×1012m3,技术可采资源量(8.1~11.4)×1012m3,均占全国致密砂岩气资源总量的86%左右。其中,鄂尔多斯盆地石炭—二叠系致密砂岩气技术可采资源量(2.9~4.0)×1012m3,四川盆地三叠系须家河组致密砂岩气技术可采资源量(2.0~2.9)×1012m3,塔里木盆地侏罗—白垩系致密砂岩气技术可采资源量(1.5~1.8)×1012m3,三者合计技术可采资源量(6.4~8.7)×1012m3,约占全国陆上致密砂岩气资源总量的78%。按照中国海油确定的近海海域致密砂岩气评价标准(海域按孔隙度5%~15%、渗透率小于10md划为致密砂岩气,与陆上标准不同),我国东海、莺歌海、珠江口三个近海盆地共有致密砂岩气技术可采资源量(1.1~2.0)×1012m3,约占全国致密砂岩气资源总量的14%。随着海域含油气盆地地质认识程度的提高和勘探开发技术的进步,海域将是未来致密砂岩气勘探开发的重要接替领域(戴金星等,2012)。

从致密砂岩气赋存的层系看,我国致密砂岩气资源埋深普遍偏大,中部地区的鄂尔多斯盆地上古生界、四川盆地三叠系须家河组埋深一般为2000~5200m;西部地区的准噶尔、塔里木、吐哈等盆地埋深一般为3800~7000m,塔里木盆地库车地区致密砂岩气埋深甚至可达8000m左右。东部和海上诸盆地致密砂岩气目的层以白垩系、古近系和新近系为主,埋深一般为2000~4500m。

截至2010年底,我国15个致密砂岩大气田探明天然气储量共计28656.7×108m3,占当年全国天然气总探明储量的37.3%,如再加上全国中小型致密砂岩气田储量(1452.5×108m3),我国致密砂岩气探明储量将达30109.2×108m3,占全国天然气总探明储量的39.2%。

由图3-6可见,1990-2010年20年间美国天然气年产气量基本呈增长之势,这主要是由于有致密砂岩气产量增长作支撑(美国储量排名前100的气藏中有58个是致密砂岩气藏)。中国截至2010年底共发现储量大于1000×108m3的大气田18个,其中9个为致密砂岩大气田,总探明地质储量25777.9×108m3,占18个大气田的53.5%。由此可见,中国与美国致密砂岩气储量有相似之处,即致密砂岩气在我国天然气储量中占举足轻重的地位,因此把致密砂岩气作为我国今后一段时间非常规气勘探开发之首是合理的。

图3-6 美国1990-2035年各类天然气历史产量和预测产量结构图

图中百分数为各类天然气占总产气量的比例

四、致密砂岩气的发展趋势

(一)致密砂岩气发展的关键因素

我国致密砂岩气早在20世纪60年代在四川盆地就已有发现,但受认识和技术限制,发展较为缓慢。2005-2011年,我国致密砂岩气地质储量年增3000×108m3,产量年增50×108m3,呈快速增长态势(图3-7)。至2011年年底致密砂岩气累计探明地质储量为3.3×1012m3,已占全国天然气总探明地质储量的40%;可采储量1.8×1012m3,约占全国天然气可采储量的1/3。2011年致密砂岩气产量达256×108m3,约占全国天然气总产量的1/4,成为我国天然气勘探开发中重要的领域。致密砂岩气的快速发展得益于以下因素。

图3-7 1990-2011年我国致密砂岩气地质储量、产量增长形势图

1.资源潜力很大

资源调查表明,我国致密砂岩气重点分布在鄂尔多斯和四川盆地,其次是塔里木、准噶尔和松辽盆地,约占资源总量的90%。采用类比法,初步评估我国致密砂岩气技术可采资源量为10×1012m3左右,目前累计探明率仅18%,加快勘探开发进度,仍具有很大潜力。

2.关键技术已基本过关

近年来,借鉴世界致密砂岩气开采的关键技术,包括直井、丛式井、水平井分段压裂技术,我国致密砂岩气开发技术取得长足进步。随着大型压裂改造技术的进步和规模化应用以及生产组织运行管理模式的创新,单井产量大幅提高,成本大大降低,有力地促进了鄂尔多斯盆地上古生界、四川盆地川中须家河组等一批大型致密砂岩气田的商业性开发利用。在鄂尔多斯盆地苏里格地区成功开发的经验表明,早期天然气几乎完全不能动用,单井产量极低,一般无自然产能;引入市场化机制后,在中国石油长庆油田主导下,其他油气田企业、相关技术服务企业和大量民营企业进入,大大调动了甲、乙双方的积极性,科技攻关不断取得突破。经过压裂改造,单井产量达到日产(1~2)×104m3,开发产能迅速提升。以苏里格气田为例,共投产2681口气井,平均单井日产量1×104m3,生产动态表明,单井稳产4年,平均单井累产可达到2300×104m3。2011年苏里格气田产量达到121×108m3,储量动用程度逐步提高。总体而言,有序监控下的市场化机制促使我国致密砂岩气开采效果有突破性进展。

3.全面动用致密砂岩气地质储量的能力较差

我国致密砂岩气具有大面积分布的特点,但由于当前的天然气价格未到位,我国全面动用致密砂岩气的能力还较差。以苏里格地区为例,按照直井单井产量划分,大于2×104m3/d的为Ⅰ类气,(1~2)×104m3/d的为Ⅱ类气,(0.5~1)×104m3/d的为Ⅲ类气,小于0.5×104m3/d的为表外气,前三类气的储量占到60%,Ⅳ类气的储量达到40%。目前,苏里格地区主要动用的是Ⅰ类气和Ⅱ类气的一部分,Ⅲ类气和表外气的储量基本没有动用,主要原因是在现行天然气价格体系下,开发成本偏高,产出投入比较小,经济效益很差,甚至亏损。

总体上,我国致密砂岩气资源品位差异较大,全面动用我国致密砂岩气资源的能力还较差。较好的致密砂岩气资源,如长庆油田苏里格地区Ⅰ类气,目前开发具有一定的经济效益。Ⅱ、Ⅲ类气和表外气资源开发的关键难点是资源品位差、开发成本高、核心技术需要持续攻关。

(二)与页岩气、煤层气发展情况对比

致密砂岩气和页岩气、煤层气的开发步伐相比,其开发速度遥遥领先。虽然在非常规天然气开采中,致密砂岩气占绝对优势,煤层气和页岩气只有很少一部分,但致密砂岩气和页岩气、煤层气当前的发展状况却明显不一样。在美国页岩气革命成功后,我国页岩气的地位发生了重大改变,一跃成为独立的矿种,而致密砂岩气只是作为天然气的细小分支而存在。舆论媒体、国内外油气巨头、资本市场对页岩气更是钟爱有加,资本市场概念股横空出世、国土资源部两轮页岩气招标的推出更是将页岩气的影响力推上顶峰。

从经济效益来看,致密砂岩气有着非常完整的产业链,产运销各环节都不存在障碍,涉足企业的盈利能力也比较可观;而页岩气目前还处在勘探阶段的初期,储量尚不能有效落实,仅中国石化涪陵页岩气田和中国石油长宁—威远页岩气田实现了商业开发,第二轮全国页岩气招标中标的企业均处于前期勘探阶段。从储量来看,页岩气可采地质储量达25×1012m3,其开发潜力无可比拟,有望在常规天然气枯竭后成为清洁能源的主要来源。从工程技术方面来看,致密砂岩气开采的关键技术已相当成熟,川西、鄂尔多斯深盆、松辽断陷和淮南已实现大规模商业化开采;而页岩气开发还处于起步阶段,页岩气对开采技术和设备的要求更高,且页岩气开发的地质条件可能更为复杂,现正加紧试验和技术攻关,运输环节也需要更多投入,不过日后页岩气开采技术突破,实现了大规模商业开发后,将成为天然气产量来源的主力军。美国页岩气产业的巨大成功为我国提供了诸多可借鉴的经验,国内页岩气产业链一旦突破诸多技术瓶颈也会迎来爆发期;虽然现阶段页岩气炙手可热,但是产量已经有相当规模的致密砂岩气同样需要更多的资本投入,以获取更多产能(文小龙,2015)。

(三)发展前景

目前,我国已经拥有较为成熟的致密砂岩气勘探开发方法和技术,并在鄂尔多斯、四川和塔里木等盆地取得了一系列重要成果,形成了鄂尔多斯盆地上古生界、川中须家河组和塔里木盆地库车深层三大致密砂岩气现实区和松辽盆地、渤海湾盆地、吐哈盆地和准噶尔盆地等四大致密砂岩气潜力区。根据中国致密砂岩气的资源基础和目前的勘探开发现状,预计在今后相当长时期内,我国每年将新增致密砂岩气探明地质储量在(2500~3500)×108m3之间;预计到2020年全国致密砂岩气年产量有可能达到600×108m3以上,产量将主要集中在鄂尔多斯盆地、四川盆地和塔里木盆地。

总体而言,我国致密砂岩气资源较丰富,勘探开发技术较为成熟,是非常规天然气最现实的勘探领域。随着致密砂岩气勘探理论和开发技术的进步,致密砂岩气将成为中国天然气工业发展的重要组成部分(李建忠等,2012)。

三、连续型油气形成与特征

非常规油气主要包括致密砂岩油气、碳酸盐岩缝洞型油气、火山岩孔缝型油气、变质岩孔缝型油气、煤层气、页岩油气、深盆油气、浅层微生物气、天然气水合物等。根据连续型油气藏的内涵和本质特征,连续型油气藏的外延与非常规油气藏不完全一致,包括了大部分非常规油气藏,也包括了目前尚处于认识盲区的新类型、新领域,但不是所有的非常规油气都是连续型油气藏,如油砂等就不属此列。连续型油气藏强调“无形”或“隐形”圈闭、大范围弥散式分布,包括部分受控于成岩作用、水动力作用或分布于火山岩裂缝和风化壳内幕的油气聚集等。

一、基本特征

连续型油气藏的本质特征是发育于非常规储集层体系之中,圈闭界限模糊不明,范围很大;无统一油气水界面和压力系统。属于明显无圈闭界限、非常规圈闭、非闭合圈闭,或“无形”或“隐形”圈闭(图2-1)。

图2-1 不同类型连续油气藏分布模式图

1.持续生烃的广覆式烃源

优质烃源岩大面积展布,源储一体或源储紧密接触,源内或近源大面积排烃聚集。例如鄂尔多斯盆地苏里格地区上古生界、川中须家河组等烃源岩有机质丰度高、中—高成熟度,煤系可持续生气,为致密砂岩大气区的形成奠定了物质基础(戴金星等,2007,2008;邹才能等,2009a,2009b,2009c)。大型坳陷湖盆发育阶段,受区域构造及基底稳定性影响而发生区域性沉降,沉降幅度具相似性,致使烃源岩在相同或相近的地质年代大面积进入成熟阶段,形成广覆式烃源层。与烃源层系有充分接触的储集砂体具有近水楼台的成藏优势,大面积成藏成为可能。

多数非常规油气富集区,发育有煤系烃源岩层,煤系烃源岩具有全天候持续生烃的特征(图2-2),即生烃过程连续,持续充注,如鄂尔多斯上古生界海陆交互相煤系烃源岩、四川盆地须家河组煤系烃源岩均具有连续生烃的特征。不仅煤系连续生烃,非煤系烃源岩也具有生烃过程连续的特点,如海相或湖相泥岩,在成熟阶段生油,在高成熟至过成熟阶段油裂解成气。王云鹏等(2008)排烃模拟实验研究结果表明,海相泥岩残留烃在ro为1.0%时达到高峰,然后逐渐降低,而煤中残留烃在ro为1.0%时达到高峰后基本保持稳定。煤吸附能力比海相泥岩强,其残留烃量也比海相泥岩大。成熟作用对于煤及海相泥岩残留烃都有很大的影响。高过成熟阶段海相地层中烃类构成以油藏或输导层中原油裂解气为主,源岩中的残余液态烃也有一定的贡献,而煤在排烃结束以后煤中分散液态烃对裂解气的贡献更大。煤中残留烃主要是前期形成的烃类因排烃效率不高而聚集起来,而海相残留烃基本上随着残余生烃潜力的下降而降低,说明海相残留烃受生烃作用的影响,也受排烃效率的影响。总之,烃源岩在不同生烃阶段有不同类型、不同流体相态的烃类生成,呈现出持续生烃的特征。

图2-2 煤演化过程中生气潜力和累积产率

持续生烃的广覆式烃源为非常规油气的形成提供了物质基础。持续生烃,弥补了油气的散失,有利于非常规油气富集区的形成。海相与煤系源岩是我国的主要气源岩类型,前期研究表明,天然气可以来自于干酪根本身,也可以来自于液态烃的二次裂解。但液态烃的赋存环境却受排烃的影响,当排烃效率低时,液态烃主要赋存于源岩内部,当排烃效率高时,液态烃主要分散分布于源岩以外的运移通道与古油藏中。这些分散的液态烃在热营力的进一步作用下,可发生二次裂解成气,在排烃效率不高或聚集效率不高的情况下,分散液态烃可能是过成熟海相天然气形成的主要来源。因此,分散及残留烃及其再裂解生气的潜力,对高成熟阶段天然气的形成和富集非常重要。通常陆相坳陷盆地和海相交互相煤系地层,有利于形成持续生气的广覆式气源层系,海相克拉通盆地有利于发育持续生烃,即早期生油、晚期生气的广覆式烃源岩系。

2.纳米级孔喉储层系统

连续型油气藏致密储层大范围展布,孔隙度一般小于10%,渗透率为10-9~1×10-3μm2,仅在断裂带发育处伴有微裂缝,储层物性变好。如鄂尔多斯盆地石炭-二叠系发育大型浅水三角洲复合砂体,储层致密,苏里格地区盒8段(24282个数据)平均孔隙度为7.34%,平均渗透率为0.63×10-3μm2;山1段(8141个数据)平均孔隙度为7.04%,平均渗透率为0.38×10-3μm2;山2段(5389个数据)平均孔隙度为5.66%,平均渗透率为1.42×10-3μm2。据四川盆地须家河组40000余个分析数据统计,平均孔隙度为5.22%,渗透率为0.253×10-3μm2。页岩油气储层为典型的致密储层,孔隙度一般为4%~6%,渗透率小于0.0001×10-3μm2。处于断裂带或裂缝发育带的页岩储集层渗透率则大大增加,孔隙度大于10%,渗透率在1×10-3μm2左右,总体储层物性差。

邹才能等(2010b)首次在四川盆地寒武系—志留系页岩气储层里发现了纳米级孔喉,孔隙直径5~750nm,平均100~200nm,呈圆形、椭圆形、网状、线状等(图2-3)。连续型油气中的纳米级孔喉的广泛存在,是油气连续型聚集和分布的理论基础。

图2-3 四川盆地威201井页岩气纳米级孔隙

应用场发射扫描电镜与nano-ct等技术,在非常规储层中发现了纳米级微观孔喉,其与传统储层孔喉特征具有较大差异(表2-4),标志着油气储层纳米级微观研究取得重大进展;该技术将有效表征油气储层内部微孔的变化规律、孔径大小、形状及孔隙率等,为全面分析微观油气运聚提供理论支持。

表2-4 油气储层常规孔喉与纳米级孔喉特征对比

图2-4 鄂尔多斯盆地二叠系盒8段沉积相与上古生界气藏分布

纳米级孔径在10~900nm之间,而烃类分子、沥青质、环状构造、链烷烃和甲烷的形成演化呈现一种连续谱的特征,自身大小自沥青质的100(0.01μm)变化到甲烷的3.8(0.00038μm),皆属小纳米级孔喉。纳米级微孔的发现,将真正开启微观储层特征与烃类演化时空匹配关系的研究,可以研究致密储层中油气的驱替和流体活动机制,对油气资源评价与区块优选具有重要的意义。

同时,随着技术方法的进步,油气储层微观孔喉研究将不断细化。油气储层孔喉研究将向着物理微观(埃()及小于埃的尺度)、纳观(几分之一纳米到几十个纳米的尺度)和细观(亚微米到丝米之间的尺度)的超微观方向发展。

3.连续型油气聚集

连续型油气聚集过程中,区域水动力影响较小,以扩散作用和非达西渗流为主,浮力作用受限,油气水分异差,但“甜点”区油气运移主要受浮力控制。成藏动力为烃源岩排烃压力为主,受生烃增压、欠压实和构造应力等控制,成藏阻力为毛细管压力,两者耦合控制油气边界或范围,多表现为油、气、水层共存,呈连续相,分布较复杂,无明显油气水界线,含油气饱和度差异较大。

连续型油气成藏运移距离一般较短,水柱压力与浮力在油气运聚中的作用局限,主要为初次运移或短距离二次运移,尤其是煤层气、页岩油气,“生—储—藏—盖”四位一体,基本上生烃后就地存储;致密砂岩油气存在一定程度的二次运移,但渗滤扩散作用是油气运移的主要方式,导致油气水分异差,如四川盆地须家河组、鄂尔多斯盆地上古生界大面积含气(图2-4),但气水共存。大庆、长庆、四川等油气田的开发实践证实,致密油气藏中流体渗流以非达西渗流为主,存在启动压力,需附加驱替力才可使流体开始流动,佐证了致密储层成藏特征。

连续型油气分布的特征是大范围弥散式含油气,存在“甜点”和富集区,油气藏下部或下倾部位无水,与源区直接接触,油气水分布复杂,无统一气油水界限和压力系统,储量规模大,存在高产富集区块。如煤层气在裂缝或割理带,尤其在地层压力降低时,发生脱水、脱气作用,释放出大量天然气,决定着天然气的富集高产。碳酸盐岩连通的缝洞体、致密砂岩中溶蚀相带或裂缝带是油气富集区。因此,连续型油气藏也存在“甜点”控制下的常规油气藏和有利区,是连续油气藏优先开发的重点,可“先富后贫”,但最终是整体开采。连续型油气藏分布在盆地斜坡或向斜区,突破了传统二级构造带控制油气分布的概念,有效勘探范围可扩展至全盆地,油气具有大面积分布、丰度不均一特征。如致密砂岩中毛细管力封闭具有达西流和非达西流双重渗流机制,广泛存在非达西渗流现象,类似针筒式或活塞推移式的运移特征,其成藏过程显示出“整体性推进、地毯式运聚”的动力机制,毛细管力控制下形成的致密油气区中,油气水关系复杂,勘探中在高部位可能遇水,而低部位可能含油气,需充分认识油气水分布的复杂性。

4.水平井压裂等开采工艺

常规技术难以开采非常规油气资源,需针对性技术提高产能,如人工改造增产、大量钻井、多分支井或水平井等。单井产量总体较低,但后期能够稳产,开发中分散气可持续充注,提供气源,开采寿命长,显示出开采过程中动态“连续性”特征,但需重复压裂。资源评价和有利区预测与常规油气不同,需发展针对连续型油气藏的核心勘探和开发技术,如资源与储量评价预测方法、叠前地震储层预测与流体检测等特殊勘探开发技术。如美国的barnett页岩气藏,具有单井产量低(0.1×104~1×104m3/d)、生产周期长(30~50a)特点,需要通过水平井、分段压裂等技术才能实现经济有效开发。

二、形成、分布及演化特征

连续型油气藏具有非圈闭油气聚集、成藏过程持续、成藏空间连续、开采过程持续等特征。

1.非圈闭油气聚集

目前发现的主要连续型油气藏在盆地构造背景、储集体性质、生储盖配置、环境物理化学条件和油气运移充注等方面均表现出非典型单一圈闭油气聚集特殊性:①形成于盆地中心及斜坡部位,处于特殊热力场、压力场和流体场环境,如深层油气的成藏环境是高温高压。②储集体大范围呈层状连片分布,孔渗性差,导致渗流机理复杂、储量丰度低、开采难度较大,如页岩在传统意义上被认为不具备储集层的特性,低孔低渗难开发,而页岩油气吸附在页岩中有机物表面,富集于裂缝发育带,总体储量丰度低,但整体规模和潜力大。③生储盖配置具特殊性,或源储一体(煤层气、页岩油气),或源储直接接触(致密砂岩油气等)。如美国皮申斯盆地鲁里森致密气田,致密砂岩或夹持在煤层烃源岩内,或与煤层直接接触,成藏条件优越。国内的四川盆地须家河组、鄂尔多斯盆地上古生界致密砂岩气,呈“三明治”结构,具有低渗透、变形双重特征。④环境、生物、物理、化学条件特殊,包括温压条件和生物物理化学作用等。如浅层砂岩生物气来源于微生物,其要求的生气环境比较苛刻(collett,2002;daijianchunetal.,2008);天然气水合物主要分布于海底或者永冻层,无论是成藏环境还是物质组成均属特殊。

2.成藏过程持续

成藏过程持续,可理解为油气运聚过程的动态平衡过程,即成藏过程相对连续。煤系烃源岩是“全天候”气源岩,生气时限长,ro值为0.6%~6.0%,是典型的生烃过程连续的烃源岩。连续生烃为持续成藏提供了物质基础和前提。页岩油气、煤层气、来自煤系的致密砂岩气等具有明显的“连续性”成藏过程。其他几类连续气如浅层砂岩生物气、天然气水合物也具备成藏过程连续的特征。浅层砂岩生物气成藏是一个持续供应与散失动态平衡的过程,只要条件适合,资源充足,微生物产气过程将会持续不断。天然气水合物形成也具有连续性特征,目前实验室内已经建立了气水合物形成模型,只要具备基本条件以及充足的甲烷和水来源,天然气水合物将会源源不断地形成。

3.成藏空间连续

成藏空间分布连续是连续型油气藏最根本的特征和标志。源储一体或储集体大范围连续分布、圈闭无形或隐形决定了油气区大面积连续分布,地层普遍含油气,油气藏边界不显著或难以确定,易形成大油气区(层)。如致密砂岩油气是典型连续型油气藏,致密砂岩气表现出在空间上的连续性特征,即气藏大面积连续分布,砂岩地层普遍含气,含气饱和度不均,缺乏明显气水界面与边底水,油气藏边界不明确。页岩气连续性特征更明显,页岩气产自其自身,又储集于自身,页岩气存储于页岩岩石颗粒之间的孔隙或裂缝中,或者吸附在页岩中有机物的表面,没有明确的圈闭界限与气水界面。煤层气是以吸附状态赋存于煤层中,煤层气藏圈闭边界更难界定。源储直接接触的盆地中心及斜坡区油气藏,空间分布具有“连续性”,如鄂尔多斯盆地三叠系油藏平面上连续分布(图2-5)。

图2-5 鄂尔多斯盆地三叠系延长组致密油平面分布

4.开采过程持续

连续型油气藏尤其是连续型气藏,开采过程中,通常持续产气,压裂后的3~5年为1个生产周期,产能逐渐下降,再次压裂后会恢复到原来产能,压裂次数和产能循环可重复多次(图2-6)。连续型气藏在开发过程中低丰度的游离气、吸附气、自由气不断聚集,使得气可以持续被采出,显示出开采过程中的连续性。以页岩气为例,据对美国页岩气井的统计,页岩气藏生产周期比较长,页岩气藏投入生产时,裂缝及其附近基质孔隙中的游离气首先被采出,随着地层压力降低,岩石表面吸附气开始解吸,通过扩散进入裂缝系统,裂缝中的页岩气则以渗流方式进入井底,采至地面。当裂缝及附近游离气和吸附气逐渐减少后,可通过再次压裂,形成新的裂缝系统,产能增大,进入新的生产周期,经过多次压裂延长生产寿命,一般页岩气井开采寿命可达30~50年。美国联邦地质调查局的最新数据(bowker,2007)显示,barnett页岩气田气井开采寿命可达80~100年。致密砂岩气等也具有开采过程连续的特征(hill et al.,2007;shanley et al.,2004)。

图2-6 美国barnett页岩多次重复压裂产量随时间的变化

①1ft = 0. 3048m

三、连续型油气藏主要类型与特征

不同类型的连续型油气藏特征、成藏机理和分布规律有共同之处,同时也存在差别。

1.致密砂岩气

连续型致密砂岩气需具备大范围、层状供气充足、供气速率高的源岩及大面积发育致密连片砂岩储集体两个有利条件。

以鄂尔多斯盆地石炭-二叠系、四川盆地三叠系须家河组为例,大型浅水三角洲形成大面积分布砂体,大面积烃源岩蒸发式层状排烃,大规模致密砂体连续分布,宏观上呈下生上储(图2-7)或生储盖呈“三明治”结构,形成了缓坡背景下大面积分布的连续型大气区(层)(赵文智等,2010;邹才能等,2009a,2009b,2009c)。

致密气藏储层物性差,孔隙度小于10%,渗透率10-9~1×10-3μm2;总体运移距离短,砂泥间互、源藏邻接;无明显圈闭和直接盖层,处于中晚成岩封闭系统内,但上覆区域性盖层好,构造活动性弱,保存条件好;分布于盆地中部及斜坡部位,气水界限与分布复杂。

天然气聚集服从“活塞式”运移原理,“层状”气运移聚集表现为气层与源岩大面积接触。短距离二次运移为主,天然气运聚中浮力作用受限。通过气藏解剖与模拟实验显示,四川盆地须家河组不同类型致密砂岩气藏启动压力等成藏机理存在差别(图2-8)。

鄂尔多斯盆地苏里格连片砂体与煤系烃源岩直接接触,天然气成藏是持续充注,从三叠纪到新近纪,一直存在天然气生排烃和充注成藏,表现为成藏过程连续。

有利储集成岩相、断裂和局部构造是连续型气藏富集主要的控制因素,如四川盆地须家河组有利成岩相是中粗砂岩溶蚀相,不同区块在北北东、东西向等方向均有断裂发育,在总体西高东低的斜坡背景上发育如广安等局部构造,形成千亿立方米级富集区带。

图2-7 鄂尔多斯盆地苏里格大气区上古生界连续型致密砂岩气分布示意图

图2-8 四川须家河组气藏低孔渗砂岩非达西渗流特征

2.致密砂岩油

致密油成为北美页岩气之后又一战略性突破领域,巴肯致密油开采借鉴页岩气技术,通过欠平衡水平井、大型压裂等技术获得成功,开辟了致密油新领域。中国广泛发育致密砂岩油藏。

大型坳陷畅流浅水三角洲、湖盆中心砂质碎屑流可形成大规模储集体,呈层状分布的烃源岩与大面积分布的砂体错叠连片,为致密砂岩油藏形成提供了条件。如松辽盆地中深层油层、鄂尔多斯盆地三叠系大面积分布的大油区(层)。

过去认为湖盆中心只发育浊积岩,不会形成大规模砂体,湖盆中心勘探未被重视。shanmugam修改了前人对深水重力流的分类,增加了砂质和泥质碎屑流类型,并发现深海发育砂质碎屑流,能够形成大面积分布砂体,有效指导了深海油气勘探(shanmugam et al.,1996)。2009年,邹才能等借鉴国外砂质碎屑流研究,提出我国湖盆中心也发育砂质碎屑流,如鄂尔多斯盆地白豹地区长6油层组,发育大套深水砂质碎屑流,其典型岩性为较纯净的块状砂岩与含泥砾细砂岩、块状砂岩,代表浊积流的正粒序浊积岩并不发育,块状砂岩是主要含油储集岩类,侧向具一定连续性,垂向累计厚度较大。

通过露头、岩心和测井分析,建立了以鄂尔多斯盆地长6组为代表的拗陷湖盆中心深水砂质碎屑流成因沉积模式,指出三角洲前缘坡折带下部是砂质碎屑流分布的主要场所。如白豹地区长6组存在环三角洲前缘末端呈带状展布的砂质碎屑流砂体,分布较广,厚度较大,物性较好,有利勘探面积在4000km2以上。湖盆中心可在斜坡中下部或坡折带底部发育大规模砂质碎屑流,而呈扇状展布的浊流分布规模很小。松辽、渤海湾盆地等广大湖盆中心也发现了大型砂质碎屑流沉积,砂体连续分布,易于形成连续型油藏。这一新认识拓展了湖盆中心找油的新领域。

四川盆地侏罗系各组段均有油气显示,“打高产井难,打干井也难,打水井更难”,类似国外致密油藏勘探初期的“口口有油,井井不流”阶段。传统观点认为四川盆地侏罗系具有“超低孔渗、构造平缓、油气分散、聚集度低”特征,属裂缝性油藏,原油产量自然递减。四川侏罗系灰岩与砂岩储层可能具有致密油形成的基本条件,石油分布不受构造、岩性和埋深控制,构造高部位和低部位都有油分布,砂岩、灰岩和页岩均可出油。四川盆地侏罗系与北美eagleford致密灰岩油、bakken致密砂岩油藏具有类似的成藏条件和油藏特征。

3.页岩气

随着全球能源需求的快速增长与勘探开发技术的进步,页岩气得到了有效开发利用,发展很快,已经占据相当的产量份额,显示出良好的发展前景。

页岩气是指产自页岩地层中的天然气,页岩既是生成天然气的源岩,也是储层和盖层。因此,高有机质含量的黑色泥页岩、高炭泥页岩是形成页岩气藏的最基本条件。影响页岩气藏形成的因素很多,其中有3个因素最为关键:一是有机质丰度,有机质丰度越高,含气量越大,一般要求toc大于2%;二是有机质成熟度,热成因气页岩的ro一般大于1.1%;三是页岩的岩石性质能控制产能大小,一般要求脆性矿物(石英、长石等)含量达到30%~40%以上,裂缝发育,有利于吸附气产出。

页岩气具有以下基本特点:一是页岩气形成于成熟有机质热演化阶段,天然气赋存方式既有游离气,也有吸附气;二是页岩气分布于平缓斜坡区、坳陷区和盆地边缘,含气范围广,气层厚度大,可预测性强;三是单井产量不高,稳定产量一般小于1×104m3,但稳产时间长,可以持续生产30~50年以上,一般不产水。

页岩气在国内、外均有发现,如美国沃斯堡盆地barnett页岩气有机碳含量为4.5%,ro值为1.0%~1.3%,裂缝发育,储量丰度为3.28×108~4.37×108m3/km2,经济效益较好。中国页岩气主要发现于四川盆地(表2-5),如川西南地区九老洞组页岩气,有机碳含量为0.44%~2.70%,ro值为1.83%~3.23%,储量丰度为0.87×108~5.79×108m3/km2,埋藏相对偏深,约3200~5000m,资源潜力大,具连续型分布特征。

表2-5 我国四川盆地与美国典型盆地页岩含气丰度对比

4.页岩油

页岩油指泥页岩中以微隙、裂缝为主要储集空间形成的油藏,是自生自储式的特殊裂缝孔隙型连续油藏。目前国内、外发现的绝大多数泥质岩裂缝孔隙型油藏,分布于以暗色泥岩及页岩为主的生油岩中,常富含有机质、钙质或硅质矿物,其有机碳丰度一般为1.0%~20%,有机质类型多样,ro多为0.5%~1.3%。泥岩裂缝孔隙型油藏与页岩气很类似,通过裂缝网状系统连续分布,为典型的连续型油藏。泥页岩裂缝孔隙型油藏形成于特殊的地质环境和成藏条件:①优质烃源岩;②发育基质孔与裂缝储集;③厚层泥页岩中的网状裂缝系统封闭性好。

5.煤层气

煤层气是煤层中自生自储式非常规天然气,煤层气源储一体,圈闭界限不明确。主要由甲烷(含量超过95%)和极少量较重的烃类以及氮气、二氧化碳组成。煤岩不仅持续生烃,而且运移、聚集、成藏、分布以及开采过程均表现出“连续性”特征,为典型的连续型气。

煤层气的储集层含有被称为割理的正交断层,其方向与煤层垂直,为流体渗流提供了主要渠道。控制煤层气含量的主要因素包括煤层厚度、煤组成成分、吸附气含量及气体组成成分。煤组成成分指煤中有机成分的数量和类型,它对可吸附气的数量影响较大。煤层中气体含量变化较大,是煤的成分、热成熟度、埋藏和上升历史、运移热量增加或生物气增加等的函数。煤层气以吸附在煤层颗粒基质表面为主,有的在煤层割理、裂缝中含微量游离气、水溶气。煤层气热值在33494.4j/m3(8000cal/m3)以上(kvenvolden,1988;何国貌等,2004;eaton,2006;邹才能等,2008)。

煤层气赋存具有明显的分带性。煤层气并非在原地、同期、一次形成,而是在含煤层系中经煤化作用不断生烃,又受上覆沉积、断裂构造和水动力作用不断改造,进而形成了具有内在联系的几个带。依据煤层气δ13c1值、非烃含量、甲烷含量和开采特点,由盆地边缘向盆地腹部一般可划分为氧化散失带、生物降解带、饱和吸附带和低解吸带4个带(表2-6)。其中饱和吸附带盖层条件好,处于承压水封闭环境,含气量大,吸附饱和度高,煤层埋深适中,物性较好,气井单井产量高,是煤层气勘探的主要目标区。

表2-6 中高煤阶区煤层气成因分带特征

在煤层气勘探中,对于中高阶煤,需找区域热变质、割理发育、承压水封闭的饱和吸附带;对于低阶煤,需找厚煤层、深盆浅层、封盖条件好的高渗区。

以上主要讨论了碎屑岩连续型油气,对于碳酸盐岩和火山岩油气有一部分亦属连续型油气藏,其前提条件是油气储集于大面积孔洞缝连通构成的连续性网络空间。碳酸盐岩孔、洞、缝同样无明显圈闭界限,难以进行圈闭描述,储集空间具有连续或准连续特点。断裂、裂缝和次生溶蚀淋滤作用形成的孔、洞、缝连续型或准连续型储集空间,对碳酸盐岩网络状油气藏的形成和分布具有关键性的控制作用,如塔里木盆地轮南、塔河油田和鄂尔多斯盆地中部碳酸盐岩气田。部分火山岩缝洞、变质岩裂缝形成的网络状油气藏,也具有连续型油气藏的特征。裂缝发育程度是火山岩、变质岩连续型油气藏形成的重要条件,如准噶尔盆地西北缘石炭系大面积风化壳连续油藏。

四、典型连续型油气对比

页岩气、页岩油、致密油、致密气和煤层气等非常规油气有很大的相同点,也有明显差异。其相同点主要有:①均为非常规致密储层;②无明显圈闭界限,无统一油气水界限,大面积连续分布;③以非达西渗流为主;④需针对性强的水平井、多级压裂等储层改造技术开采。

不同非常规油气的特殊性存在差别。如页岩气特殊性在于(表2-7):①储层致密,纳米级孔隙,渗透率低;②源储一体,生气有机质孔是重要的储集空间;③生气后,无运移或页岩层内极短运移;④致密气、致密油及煤层气等可共生,形成连续型含气层系,合层开采可大幅度提高单井产量及开发效益。

表2-7 不同类型非常规油气的主要区别